Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(3): e25338, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38356596

RESUMO

Paralytic shellfish poisoning is a foodborne illness that typically derive from the consumption of shellfish contaminated with saxitoxin-group of toxins produced by dinoflagellates of the genus Gymnodinium, Alexandrium and Pyrodinium. N-sulfocarbamoyl, carbamate and dicarbamoyl are the most abundant. In 2007 and 2008 some episodes of PSP occurred in Angola where there is not monitoring program for shellfish contamination with marine biotoxins. Therefore, ten samples extracted from Semele proficua from Luanda Bay and Senilia senilis from Mussulo Bay, were analyzed by HPLC finding saxitoxin, decarbamoylsaxitoxin and other three compounds that have an unusual profile different to the known hydrophilic PSP toxins were found in different amounts and combinations. These new compounds were not autofluorescent, and they presented much stronger response after peroxide oxidation than after periodate oxidation. The compounds appear as peaks eluted at 2.5 and 5.6 min after periodate oxidation and 8.2 min after peroxide oxidation. Electrophysiological studies revealed that none of the three unknown compounds had effect at cellular level by decreasing the maximum peak inward sodium currents by blocking voltage-gated sodium channels. Thus, not contributing to PSP intoxication. The presence in all samples of saxitoxin-group compounds poses a risk to human health and remarks the need to further explore the presence of new compounds that contaminate seafood, investigating their activity and developing monitoring programs.

2.
Chem Res Toxicol ; 36(12): 1990-2000, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-37965843

RESUMO

Emerging marine biotoxins such as ciguatoxins and brevetoxins have been widely and independently studied as food pollutants. Their maximum levels in food components were set without considering their possible synergistic effects as consequence of their coexistence in seafood and their action at the same cellular target. The absolute lack of data and regulations of the possible combined effects that both marine biotoxins may have raised the need to analyze their direct in vitro effects using electrophysiology techniques. The results presented in this study indicate that ciguatoxins and brevetoxins had a synergistic effect on human Nav1.6 voltage-gated sodium channels by hyperpolarizing their activation and inactivation states. The results presented here indicate that brevetoxin 3 (BTX-3) acts as partial agonist of human sodium channels, while ciguatoxin 3C (CTX3C) was a full agonist, explaining the differences in the effect of each toxin in the channel. Therefore, this work sets the cellular basis to further apply this type of studies to other food toxicants that may act synergistically and thus implement the corresponding regulatory limits considering their coexistence and the risks to human and animal health derived from it.


Assuntos
Ciguatoxinas , Canais de Sódio Disparados por Voltagem , Animais , Humanos , Ciguatoxinas/farmacologia , Toxinas Marinhas/farmacologia
3.
Food Chem Toxicol ; 182: 114178, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37944783

RESUMO

Brevetoxins (PbTxs) are emerging marine toxins that can lead to Neurotoxic Shellfish Poisoning in humans by the ingestion of contaminated seafood. Recent reports on brevetoxin detection in shellfish in regions where it has not been described before, arise the need of updated guidelines to ensure seafood consumers safety. Our aim was to provide toxicological data for brevetoxin 3 (PbTx3) by assessing oral toxicity in mice and comparing it with intraperitoneal administration. We followed an Up-and-Down procedure administering PbTx3 to mice and registering clinical signs, neuromuscular function, histopathology, and blood changes. Neuromuscular dysfunction like seizures and ataxia, as well as loss of limb strength were observed at 6 h. Performance and clinical signs largely improved at 24 h, time at which no blood biochemical or histological alterations were detected independently of the administration route. However, PbTx3 oral administration results in lower toxicity than intraperitoneal administration. Mortality was only observed at 4000 µg/kg bw PbTx3 administered via oral, but we still found toxicity clinical signs at low toxin doses. We could stablish an oral Lowest-Observable-Adverse-Effect-Level for PbTx3 of 100 µg/kg bw and an oral No-Observable-Adverse-Effect-Level of 10 µg/kg bw in mice. The data here reported should be considered in the evaluation of risks of PbTxs for human health.


Assuntos
Toxinas Marinhas , Animais , Humanos , Camundongos , Toxinas Marinhas/toxicidade , Inocuidade dos Alimentos
4.
Mar Drugs ; 21(11)2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37999414

RESUMO

The growing concern about ciguatera fish poisoning (CF) due to the expansion of the microorganisms producing ciguatoxins (CTXs) increased the need to develop a reliable and fast method for ciguatoxin detection to guarantee food safety. Cytotoxicity assay on the N2a cells sensitized with ouabain (O) and veratridine (V) is routinely used in ciguatoxin detection; however, this method has not been standardized yet. This study demonstrated the low availability of sodium channels in the N2a cells, the great O/V damage to the cells and the cell detachment when the cell viability is evaluated by the classical cytotoxicity assay and confirmed the absence of toxic effects caused by CTXs alone when using the methods that do not require medium removal such as lactate dehydrogenase (LDH) and Alamar blue assays. Different cell lines were evaluated as alternatives, such as human neuroblastoma, which was not suitable for the CTX detection due to the greater sensitivity to O/V and low availability of sodium channels. However, the HEK293 Nav cell line expressing the α1.6 subunit of sodium channels was sensitive to the ciguatoxin without the sensitization with O/V due to its expression of sodium channels. In the case of sensitizing the cells with O/V, it was possible to detect the presence of the ciguatoxin by the classical cytotoxicity MTT method at concentrations as low as 0.0001 nM CTX3C, providing an alternative cell line for the detection of compounds that act on the sodium channels.


Assuntos
Intoxicação por Ciguatera , Ciguatoxinas , Neuroblastoma , Camundongos , Animais , Humanos , Ciguatoxinas/toxicidade , Células HEK293 , Canais de Sódio/metabolismo
5.
Sci Total Environ ; 858(Pt 3): 160111, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36370778

RESUMO

Emerging marine biotoxins such as ciguatoxins and pyrethroid compounds, widely used in agriculture, are independently treated as environmental toxicants. Their maximum residue levels in food components are set without considering their possible synergistic effects as consequence of their interaction with the same cellular target. There is an absolute lack of data on the possible combined cellular effects that biological and chemical pollutants, may have. Nowadays, an increasing presence of ciguatoxins in European Coasts has been reported and these toxins can affect human health. Similarly, the increasing use of phytosanitary products for control of food plagues has raised exponentially during the last decades due to climate change. The lack of data and regulation evaluating the combined effect of environmental pollutants with the same molecular target led us to analyse their in vitro effects. In this work, the effects of ciguatoxins and pyrethroids in human sodium channels were investigated. The results presented in this study indicate that both types of compounds have a profound synergistic effect in voltage-dependent sodium channels. These food pollutants act by decreasing the maximum peak inward sodium currents and hyperpolarizing the sodium channels activation, effects that are boosted by the simultaneous presence of both compounds. A fact that highlights the need to re-evaluate their limits in feedstock as well as their potential in vivo toxicity considering that they act on the same cellular target. Moreover, this work sets the cellular basis to further apply this type of studies to other water and food pollutants that may act synergistically and thus implement the corresponding regulatory limits taking into account its presence in a healthy diet.


Assuntos
Poluentes Ambientais , Praguicidas , Humanos , Toxinas Marinhas , Canais de Sódio
6.
Food Chem Toxicol ; 169: 113449, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36206954

RESUMO

Okadaic acid (OA) is an important marine lipophilic phycotoxin responsible for diarrhetic shellfish poisoning (DSP). This toxin inhibits protein phosphatases (PPs) like PP2A and PP1, though, this action does not explain OA-induced toxicity and symptoms. Intestinal epithelia comprise the defence barrier against external agents where transport of fluid and electrolytes from and to the lumen is a tightly regulated process. In some intoxications this balance becomes dysregulated appearing diarrhoea. Therefore, we evaluated diarrhoea in orally OA-treated mice as well as in mice pre-treated with several doses of cyproheptadine (CPH) and then treated with OA at different times. We assessed stools electrolytes and ultrastructural alteration of the intestine, particularly evaluating tight and adherens junctions. We detected increased chloride and sodium faecal concentrations in the OA-exposed group, suggesting a secretory diarrhoea. Pre-treatment with CPH maintains chloride concentration in values similar to control mice. Intestinal cytomorphological alterations were observed for OA mice, whereas CPH pre-treatment attenuated OA-induced damage in proximal colon and jejunum at 2 h. Conversely, tight junctions' distance was only affected by OA in jejunum at the moment diarrhoea occurred. In this study we found cellular mechanisms by which OA induced diarrhoea revealing the complex toxicity of this compound.


Assuntos
Diarreia , Ácido Okadáico , Animais , Camundongos , Cloretos/análise , Cloretos/metabolismo , Ciproeptadina/farmacologia , Diarreia/induzido quimicamente , Ácido Okadáico/toxicidade , Fosfoproteínas Fosfatases/antagonistas & inibidores , Sódio/análise , Sódio/metabolismo , Junções Íntimas/efeitos dos fármacos , Junções Íntimas/metabolismo , Jejuno/efeitos dos fármacos , Jejuno/metabolismo
7.
Arch Toxicol ; 96(9): 2621-2638, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35657391

RESUMO

Ciguatoxins are marine compounds that share a ladder-shaped polyether structure produced by dinoflagellates of the genus Gambierdiscus and Fukuyoa, and include maitotoxins (MTX1 and MTX3), ciguatoxins (CTX3C) and analogues (gambierone), components of one of the most frequent human foodborne illness diseases known as ciguatera fish poisoning. This disease was previously found primarily in tropical and subtropical areas but nowadays, the dinoflagellates producers of ciguatoxins had spread to European coasts. One decade ago, the European Food Safety Authority has raised the need to complete the toxicological available data for the ciguatoxin group of compounds. Thus, in this work, the in vivo effects of ciguatoxin-related compounds have been investigated using internationally adopted guidelines for the testing of chemicals. Intraperitoneal acute toxicity was tested for maitotoxin 1 at doses between 200 and 3200 ng/kg and the acute oral toxicity of Pacific Ciguatoxin CTX3C at 330 and 1050 ng/kg and maitotoxin 1 at 800 ng/kg were also evaluated showing not effects on mice survival after a 96 h observation period. Therefore, for the following experiments the oral subchronic doses were between 172 and 1760 ng/kg for gambierone, 10 and 102 ng/kg for Pacific Ciguatoxin CTX3C, 550 and 1760 ng/kg for maitotoxin 3 and 800, 2560 and 5000 ng/kg for maitotoxin 1. The results presented here raise the need to reevaluate the in vivo activity of these agents. Although the intraperitoneal lethal dose of maitotoxin 1 is assumed to be 50 ng/kg, without chemical purity identifications and description of the bioassay procedures, in this work, an intraperitoneal lethal dose of 1107 ng/kg was obtained. Therefore, the data presented here highlight the need to use a common procedure and certified reference material to clearly establish the levels of these environmental contaminants in food.


Assuntos
Intoxicação por Ciguatera , Ciguatoxinas , Dinoflagelados , Animais , Bioensaio , Ciguatoxinas/química , Ciguatoxinas/toxicidade , Dinoflagelados/química , Humanos , Camundongos
8.
Food Chem Toxicol ; 160: 112812, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35026329

RESUMO

Ciguatoxins (CTXs) which are produced by dinoflagellates of the genus Gambierdiscus and Fukuyoa and share a ladder-shaped polyether structure, are causative compounds of one of the most frequent foodborne illness disease known as ciguatera fish poisoning (CFP). CFP was initially found in tropical and subtropical areas but nowadays the dinoflagellates producers of ciguatoxins had spread to European coasts. Therefore, this raises the need of establishing toxicity equivalency factors for the different compounds that can contribute to ciguatera fish poisoning, since biological methods have been replaced by analytical techniques. Thus, in this work, the effects of six compounds causative of ciguatera, on their main target, the human voltage-gated sodium channels have been analyzed for the first time. The results presented here led to the conclusion that the order of potency was CTX1B, CTX3B, CTX4A, gambierol, gambierone and MTX3. Furthermore, the data indicate that the activation voltage of sodium channels is more sensitive to detect ciguatoxins than their effect on the peak sodium current amplitude.


Assuntos
Intoxicação por Ciguatera/metabolismo , Ciguatoxinas/toxicidade , Testes de Toxicidade/métodos , Canais de Sódio Disparados por Voltagem/metabolismo , Linhagem Celular , Intoxicação por Ciguatera/etiologia , Intoxicação por Ciguatera/genética , Ciguatoxinas/química , Humanos , Cinética , Canais de Sódio Disparados por Voltagem/química , Canais de Sódio Disparados por Voltagem/genética
9.
Arch Toxicol ; 95(8): 2797-2813, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34148100

RESUMO

The consumption of contaminated shellfish with okadaic acid (OA) group of toxins leads to diarrhoeic shellfish poisoning (DSP) characterized by a set of symptoms including nausea, vomiting and diarrhoea. These phycotoxins are Ser/Thr phosphatase inhibitors, which produce hyperphosphorylation in cellular proteins. However, this inhibition does not fully explain the symptomatology reported and other targets could be relevant to the toxicity. Previous studies have indicated a feasible involvement of the nervous system. We performed a set of in vivo approaches to elucidate whether neuropeptide Y (NPY), Peptide YY (PYY) or serotonin (5-HT) was implicated in the early OA-induced diarrhoea. Fasted Swiss female mice were administered NPY, PYY(3-36) or cyproheptadine intraperitoneal prior to oral OA treatment (250 µg/kg). A non-significant delay in diarrhoea onset was observed for NPY (107 µg/kg) and PYY(3-36) (1 mg/kg) pre-treatment. On the contrary, the serotonin antagonist cyproheptadine was able to block (10 mg/kg) or delay (0.1 and 1 mg/kg) diarrhoea onset suggesting a role of 5-HT. This is the first report of the possible involvement of serotonin in OA-induced poisoning.


Assuntos
Diarreia/etiologia , Ácido Okadáico/toxicidade , Serotonina/metabolismo , Animais , Ciproeptadina/farmacologia , Inibidores Enzimáticos/toxicidade , Feminino , Camundongos , Neuropeptídeo Y/metabolismo , Fragmentos de Peptídeos/metabolismo , Peptídeo YY/metabolismo , Antagonistas da Serotonina/farmacologia , Intoxicação por Frutos do Mar/fisiopatologia , Fatores de Tempo
10.
Chem Res Toxicol ; 34(3): 865-879, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33512997

RESUMO

Azaspiracids (AZAs) are marine toxins produced by dinoflagellates belonging to the genera Azadinium and Amphidoma that caused human intoxications after consumption of contaminated fishery products, such as mussels. However, the exact mechanism for the AZA induced cytotoxic and neurotoxic effects is still unknown. In this study several pharmacological approaches were employed to evaluate the role of anion channels on the AZA effects that demonstrated that cellular anion dysregulation was involved in the toxic effects of these compounds. The results presented here demonstrated that volume regulated anion channels (VRACs) are affected by this group of toxins, and, because there is not any specific activator of VRACs besides the intracellular application of GTPγ-S molecule, this group of natural compounds could represent a powerful tool to analyze the role of these channels in cellular homeostasis. In addition to this, in this work, a detailed pharmacological approach was performed in order to elucidate the anion channels present in human HEK293 cells as well as their regulation by the marine toxins azaspiracids. Altogether, the data presented here demonstrated that the effect of azaspiracids in human cells was completely dependent on ATP-regulated anion channels, whose upregulation by these toxins could lead to regulatory volume decrease and underlie the reported toxicity of these compounds.


Assuntos
Canais de Cloreto/metabolismo , Toxinas Marinhas/farmacologia , Compostos de Espiro/farmacologia , Trifosfato de Adenosina/metabolismo , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Toxinas Marinhas/química , Compostos de Espiro/química
11.
Mar Drugs ; 19(1)2021 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-33430011

RESUMO

Okadaic acid (OA) and its main structural analogs dinophysistoxin-1 (DTX1) and dinophysistoxin-2 (DTX2) are marine lipophilic phycotoxins distributed worldwide that can be accumulated by edible shellfish and can cause diarrheic shellfish poisoning (DSP). In order to study their toxicokinetics, mice were treated with different doses of OA, DTX1, or DTX2 and signs of toxicity were recorded up to 24 h. Toxin distribution in the main organs from the gastrointestinal tract was assessed by liquid chromatography-mass spectrometry (LC/MS/MS) analysis. Our results indicate a dose-dependency in gastrointestinal absorption of these toxins. Twenty-four hours post-administration, the highest concentration of toxin was detected in the stomach and, in descending order, in the large intestine, small intestine, and liver. There was also a different toxicokinetic pathway between OA, DTX1, and DTX2. When the same toxin doses are compared, more OA than DTX1 is detected in the small intestine. OA and DTX1 showed similar concentrations in the stomach, liver, and large intestine tissues, but the amount of DTX2 is much lower in all these organs, providing information on DSP toxicokinetics for human safety assessment.


Assuntos
Toxinas Marinhas/farmacocinética , Intoxicação por Frutos do Mar , Animais , Cromatografia Líquida de Alta Pressão , Relação Dose-Resposta a Droga , Feminino , Intestinos , Toxinas Marinhas/toxicidade , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos C57BL , Ácido Okadáico/análogos & derivados , Ácido Okadáico/farmacocinética , Frutos do Mar/análise , Estômago , Distribuição Tecidual , Toxicocinética
12.
Toxins (Basel) ; 12(10)2020 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-32987858

RESUMO

Seafood represents a significant part of the human staple diet. In the recent years, the identification of emerging lipophilic marine toxins has increased, leading to the potential for consumers to be intoxicated by these toxins. In the present work, we investigate the presence of lipophilic marine toxins (both regulated and emerging) in commercial seafood products from non-European locations, including mussels Mytilus chilensis from Chile, clams Tawerea gayi and Metetrix lyrate from the Southeast Pacific and Vietnam, and food supplements based on mussels formulations of Perna canaliculus from New Zealand. All these products were purchased from European Union markets and they were analyzed by UPLC-MS/MS. Results showed the presence of the emerging pinnatoxin-G in mussels Mytilus chilensis at levels up to 5.2 µg/kg and azaspiracid-2 and pectenotoxin-2 in clams Tawera gayi up to 4.33 µg/kg and 10.88 µg/kg, respectively. This study confirms the presence of pinnatoxins in Chile, one of the major mussel producers worldwide. Chromatograms showed the presence of 13-desmethyl spirolide C in dietary supplements in the range of 33.2-97.9 µg/kg after an extraction with water and methanol from 0.39 g of the green lipped mussels powder. As far as we know, this constitutes the first time that an emerging cyclic imine toxin in dietary supplements is reported. Identifying new matrix, locations, and understanding emerging toxin distribution area are important for preventing the risks of spreading and contamination linked to these compounds.


Assuntos
Ração Animal/análise , Suplementos Nutricionais/análise , Iminas/análise , Toxinas Marinhas/análise , Mytilus/química , Perna (Organismo)/química , Alimentos Marinhos/análise , Compostos de Espiro/análise , Ração Animal/toxicidade , Animais , Aquicultura , Suplementos Nutricionais/toxicidade , Contaminação de Alimentos , Iminas/toxicidade , Toxinas Marinhas/toxicidade , Medição de Risco , Compostos de Espiro/toxicidade
13.
Chem Res Toxicol ; 33(10): 2593-2604, 2020 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-32872774

RESUMO

Azaspiracid toxins were first identified at the end of the last century in Irish mussels, and during the last two decades considerable cytotoxic and neurotoxic effects caused by these toxins have been described. Azaspiracids are synthesized by dinoflagellates and accumulate in several species of filter-feeding bivalve mollusks, thereby incorporating into the food chain and causing human intoxications. Among the cellular effects of azaspiracids, inhibition of spikes in neurons and hyperpolarization of the neuronal membrane potential have been reported; however, the underlying processes leading to these effects were never elucidated. In this regard, initial studies reported no activity of the toxin in neuronal voltage-gated sodium channels, and a recent work described no effect of azaspiracid-1 on the inactivation kinetics of voltage-gated sodium channels; however, the relationship between the known alterations of the cytoskeleton caused by these toxins and their effects on ion channels has never been evaluated. In this work, the cytotoxic effect of azaspiracids was evaluated in human cells as well as their activity on voltage-gated sodium channels and in cell morphology in order to unravel the cellular targets involved in the mechanism of action of this group of marine toxins. The data reported here demonstrate, for the first time, that both azaspiracid-1 and azaspiracid-2 caused a rapid concentration-dependent inhibition of the amplitude of voltage-gated sodium currents without affecting their inactivation kinetics, an effect that was increased after long-term treatment of the cells with the toxin. Simultaneously, long-term exposure of the cells to azaspiracids caused a profound alteration of the cell cytoskeleton and decreased the metabolic activity of human cells. Altogether, the data presented here indicate that the partial blockade of voltage-gated sodium channels by these toxins is not related with their effect on the actin cytoskeleton. However, since azaspiracids are common toxins in European waters, their effect on voltage-gated sodium channels, first reported here, should be considered to avoid synergistic toxicity with other marine toxins that are known potent blockers of sodium channels such as the saxitoxins and tetrodotoxins, but further studies are needed in order to elucidate how these compounds alter ion homeostasis.


Assuntos
Toxinas Marinhas/farmacologia , Compostos de Espiro/farmacologia , Canais de Sódio Disparados por Voltagem/metabolismo , Células Cultivadas , Células HEK293 , Humanos , Toxinas Marinhas/química , Estrutura Molecular , Compostos de Espiro/química
14.
Toxins (Basel) ; 12(8)2020 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-32751719

RESUMO

Palytoxin (PLTX) is one of the most poisonous substances known to date and considered as an emergent toxin in Europe. Palytoxin binds to the Na+-K+ ATPase, converting the enzyme in a permeant cation channel. This toxin is known for causing human fatal intoxications associated with the consumption of contaminated fish and crustaceans such as crabs, groupers, mackerel, and parrotfish. Human intoxications by PLTX after consumption of contaminated fishery products are a serious health issue and can be fatal. Different reports have previously explored the acute oral toxicity of PLTX in mice. Although the presence of palytoxin in marine products is currently not regulated in Europe, the European Food Safety Authority expressed its opinion on PLTX and demanded assessment for chronic toxicity studies of this potent marine toxin. In this study, the chronic toxicity of palytoxin was evaluated after oral administration to mice by gavage during a 28-day period. After chronic exposure of mice to the toxin, a lethal dose 50 (LD50) of 0.44 µg/kg of PLTX and a No-Observed-Adverse-Effect Level (NOAEL) of 0.03 µg/kg for repeated daily oral administration of PLTX were determined. These results indicate a much higher chronic toxicity of PLTX and a lower NOAEL than that previously described in shorter treatment periods, pointing out the need to further reevaluate the levels of this compound in marine products.


Assuntos
Acrilamidas/toxicidade , Venenos de Cnidários/toxicidade , Administração Oral , Animais , Cloretos/sangue , Feminino , Dose Letal Mediana , Camundongos , Nível de Efeito Adverso não Observado , Potássio/sangue , Sódio/sangue , Estômago/efeitos dos fármacos , Estômago/patologia , Estômago/ultraestrutura , Testes de Toxicidade Subaguda
15.
Neuroscience ; 439: 106-116, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31255710

RESUMO

Gambierol is a marine polycyclic ether toxin, first isolated from cultured Gambierdiscus toxicus dinoflagellates collected in French Polynesia. The chemical synthesis of gambierol permitted the analyses of its mode of action which includes the selective inhibition of voltage-gated K+ (KV) channels. In the present study we investigated the action of synthetic gambierol at vertebrate neuromuscular junctions using conventional techniques. Gambierol was studied on neuromuscular junctions in which muscle nicotinic ACh receptors have been blocked with d-tubocurarine (postsynaptic block), or in junctions in which quantal ACh release has been greatly reduced by a low Ca2+-high Mg2+ medium or by botulinum neurotoxin type-A (BoNT/A) (presynaptic block). Results show that nanomolar concentrations of gambierol inhibited the fast K+ current and prolonged the duration of the presynaptic action potential in motor nerve terminals, as revealed by presynaptic focal current recordings, increased stimulus-evoked quantal content in junctions blocked by high Mg2+-low Ca2+ medium, and by BoNT/A, reversed the postsynaptic block produced by d-tubocurarine and increased the transient Ca2+ signals in response to nerve-stimulation (1-10 Hz) in nerve terminals loaded with fluo-3/AM. The results suggest that gambierol, which on equimolar basis is more potent than 3,4-diaminopyridine, can have potential application in pathologies in which it is necessary to antagonize pre- or post-synaptic neuromuscular block, or both. This article is part of a Special Issue entitled: Honoring Ricardo Miledi - outstanding neuroscientist of XX-XXI centuries.


Assuntos
Ciguatoxinas , Potenciais de Ação , Animais , Junção Neuromuscular , Transmissão Sináptica , Vertebrados
16.
Toxins (Basel) ; 11(6)2019 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-31146400

RESUMO

Tetrodotoxin (TTX) is an extremely toxic marine compound produced by different genera of bacteria that can reach humans through ingestion mainly of pufferfish but also of other contaminated fish species, marine gastropods or bivalves. TTX blocks voltage-gated sodium channels inhibiting neurotransmission, which in severe cases triggers cardiorespiratory failure. Although TTX has been responsible for many human intoxications limited toxicological data are available. The recent expansion of TTX from Asian to European waters and diversification of TTX-bearing organisms entail an emerging risk of food poisoning. This study is focused on the acute toxicity assessment of TTX administered to mice by oral gavage following macroscopic and microscopic studies. Necropsy revealed that TTX induced stomach swelling 2 h after administration, even though no ultrastructural alterations were further detected. However, transmission electron microscopy images showed an increase of lipid droplets in hepatocytes, swollen mitochondria in spleens, and alterations of rough endoplasmic reticulum in intestines as hallmarks of the cellular damage. These findings suggested that gastrointestinal effects should be considered when evaluating human TTX poisoning.


Assuntos
Neurotoxinas/toxicidade , Tetrodotoxina/toxicidade , Administração Oral , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Encéfalo/ultraestrutura , Retículo Endoplasmático Rugoso/efeitos dos fármacos , Feminino , Intestinos/efeitos dos fármacos , Intestinos/patologia , Intestinos/ultraestrutura , Rim/efeitos dos fármacos , Rim/patologia , Rim/ultraestrutura , Fígado/efeitos dos fármacos , Fígado/patologia , Fígado/ultraestrutura , Pulmão/efeitos dos fármacos , Pulmão/patologia , Pulmão/ultraestrutura , Camundongos , Microscopia Eletrônica de Transmissão , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/patologia , Miocárdio/patologia , Miocárdio/ultraestrutura , Paralisia/induzido quimicamente , Convulsões/induzido quimicamente , Baço/efeitos dos fármacos , Baço/patologia , Baço/ultraestrutura , Estômago/efeitos dos fármacos , Estômago/ultraestrutura , Testes de Toxicidade Aguda
17.
Cell Physiol Biochem ; 49(2): 743-757, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30176657

RESUMO

BACKGROUND/AIMS: Okadaic acid (OA) and the structurally related compounds dinophysistoxin-1 (DTX1) and dinophysistoxin-2 (DTX2) are marine phycotoxins that cause diarrheic shellfish poisoning (DSP) in humans due to ingestion of contaminated shellfish. In order to guarantee consumer protection, the regulatory authorities have defined the maximum level of DSP toxins as 160 µg OA equivalent kg-1 shellfish meat. For risk assessment and overall toxicity determination, knowledge of the relative toxicities of each analogue is required. In absence of enough information from human intoxications, oral toxicity in mice is the most reliable data for establishing Toxicity Equivalence Factors (TEFs). METHODS: Toxins were administered to mice by gavage, after that the symptomatology and mice mortality was registered over a period of 24 h. Organ damage data were collected at necropsy and transmission electron microscopy (TEM) was used for ultrastructural studies. Toxins in urine, feces and blood were analyzed by HPLC-MS/MS. The evaluation of in vitro potencies of OA, DTX1 and DTX2 was performed by the protein phosphatase 2A (PP2A) inhibition assay. RESULTS: Mice that received DSP toxins by gavage showed diarrhea as the main symptom. Those toxins caused similar gastrointestinal alterations as well as intestine ultrastructural changes. However, DSP toxins did not modify tight junctions to trigger diarrhea. They had different toxicokinetics and toxic potency. The lethal dose 50 (LD50) was 487 µg kg-1 bw for DTX1, 760 µg kg-1 bw for OA and 2262 µg kg-1 bw for DTX2. Therefore, the oral TEF values are: OA = 1, DTX1 = 1.5 and DTX2 = 0.3. CONCLUSION: This is the first comparative study of DSP toxins performed with accurate well-characterized standards and based on acute toxicity data. Results confirmed that DTX1 is more toxic than OA by oral route while DTX2 is less toxic. Hence, the current TEFs based on intraperitoneal toxicity should be modified. Also, the generally accepted toxic mode of action of this group of toxins needs to be reevaluated.


Assuntos
Peso Corporal/efeitos dos fármacos , Ácido Okadáico/toxicidade , Piranos/toxicidade , Administração Oral , Animais , Cromatografia Líquida de Alta Pressão , Feminino , Coração/efeitos dos fármacos , Intestino Delgado/efeitos dos fármacos , Intestino Delgado/patologia , Fígado/efeitos dos fármacos , Fígado/patologia , Fígado/ultraestrutura , Camundongos , Miocárdio/ultraestrutura , Ácido Okadáico/análise , Ácido Okadáico/urina , Proteína Fosfatase 2/antagonistas & inibidores , Proteína Fosfatase 2/metabolismo , Piranos/análise , Piranos/urina , Estômago/efeitos dos fármacos , Estômago/patologia , Espectrometria de Massas em Tandem , Testes de Toxicidade
18.
Toxins (Basel) ; 10(8)2018 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-30096904

RESUMO

Marine biotoxins are produced by aquatic microorganisms and accumulate in shellfish or finfish following the food web. These toxins usually reach human consumers by ingestion of contaminated seafood, although other exposure routes like inhalation or contact have also been reported and may cause serious illness. This review shows the current data regarding the symptoms of acute intoxication for several toxin classes, including paralytic toxins, amnesic toxins, ciguatoxins, brevetoxins, tetrodotoxins, diarrheic toxins, azaspiracids and palytoxins. The information available about chronic toxicity and relative potency of different analogs within a toxin class are also reported. The gaps of toxicological knowledge that should be studied to improve human health protection are discussed. In general, gathering of epidemiological data in humans, chronic toxicity studies and exploring relative potency by oral administration are critical to minimize human health risks related to these toxin classes in the near future.


Assuntos
Toxinas Marinhas/toxicidade , Intoxicação por Frutos do Mar , Acrilamidas/toxicidade , Animais , Humanos , Ácido Okadáico/toxicidade , Compostos de Espiro/toxicidade
19.
Cell Physiol Biochem ; 43(1): 136-146, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28848202

RESUMO

BACKGROUND: Azaspiracids (AZAs) are marine biotoxins produced by the dinoflagellates genera Azadinium and Amphidoma. These toxins cause azaspiracid poisoning (AZP), characterized by severe gastrointestinal illness in humans after the consumption of bivalve molluscs contaminated with AZAs. The main aim of the present study was to examine the consequences of human exposure to AZA1 by the study of absorption and effects of the toxin on Caco-2 cells, a reliable model of the human intestine. METHODS: The ability of AZA1 to cross the human intestinal epithelium has been evaluated by the Caco-2 transepithelial permeability assay. The toxin has been detected and quantified using a microsphere-based immunoassay. Cell alterations and ultrastructural effects has been observed with confocal and transmission electron microscopy Results: AZA1 was absorbed by Caco-2 cells in a dose-dependent way without affecting cell viability. However, modifications on occludin distribution detected by confocal microscopy imaging indicated a possible monolayer integrity disruption. Nevertheless, transmission electron microscopy imaging revealed ultrastructural damages at the nucleus and mitochondria with autophagosomes in the cytoplasm, however, tight junctions and microvilli remained unaffected. CONCLUSION: After the ingestion of molluscs with the AZA1, the toxin will be transported through the human intestinal barrier to blood causing damage on epithelial cells.


Assuntos
Toxinas Marinhas/farmacologia , Permeabilidade/efeitos dos fármacos , Compostos de Espiro/farmacologia , Autofagossomos/efeitos dos fármacos , Autofagossomos/ultraestrutura , Células CACO-2 , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/ultraestrutura , Sobrevivência Celular/efeitos dos fármacos , Dinoflagelados/metabolismo , Humanos , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Toxinas Marinhas/farmacocinética , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/ultraestrutura , Ocludina/metabolismo , Compostos de Espiro/farmacocinética
20.
Anal Chem ; 89(14): 7438-7446, 2017 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-28648045

RESUMO

Palytoxin (PLTX) is a complex marine toxin produced by Zoanthids (Palyhtoa), dinoflagellates (Ostreopsis), and cyanobacteria (Trichodesmium). Contact with PLTX-like compounds present in aerosols or marine organisms has been associated with adverse effects on humans. The worldwide distribution of producer species and seafood contaminated with PLTX-like molecules illustrates the global threat to human health. The identification of species capable of palytoxin production is critical for human safety. We studied the presence of PLTX analogues in Palythoa canariensis, a coral species collected in the Atlantic Ocean never described as a PLTX-producer before. Two methodologies were used for the detection of these toxins: a microsphere-based immunoassay that offered an estimation of the content of PLTX-like molecules in a Palythoa canariensis extract and an ultrahigh-pressure liquid chromatography coupled to an ion trap with a time-of-flight mass spectrometer (UPLC-IT-TOF-MS) that allowed the characterization of the toxin profile. The results demonstrated the presence of PLTX, hydroxy-PLTX and, at least, two additional compounds with PLTX-like profile in the Palythoa canariensis sample. The PLTX content was estimated in 0.27 mg/g of lyophilized coral using UPLC-IT-TOF-MS. Therefore, this work demonstrates that Palythoa canariensis produces a mixture of PLTX-like molecules. This is of special relevance to safeguard human health considering Palythoa species are commonly used for decoration by aquarium hobbyists.


Assuntos
Acrilamidas/análise , Venenos de Cnidários/análise , Animais , Antozoários , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...